ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation.
نویسندگان
چکیده
H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to ionizing radiation (IR) occurs to similar extents in human fibroblasts and in mouse embryo fibroblasts lacking either DNA-PK or ATM but is ablated in ATM-deficient cells treated with LY294002, a drug that specifically inhibits DNA-PK. Additionally, we show that inactivation of both DNA-PK and ATM is required to ablate IR-induced H2AX phosphorylation in chicken cells. We confirm that H2AX phosphorylation induced by DSBs in nonreplicating cells is ATR (ataxia telangiectasia and Rad3-related protein) independent. Taken together, we conclude that under most normal growth conditions, IR-induced H2AX phosphorylation can be carried out by ATM and DNA-PK in a redundant, overlapping manner. In contrast, DNA-PK cannot phosphorylate other proteins involved in the checkpoint response, including chromatin-associated Rad17. However, by phosphorylating H2AX, DNA-PK can contribute to the presence of the damage response proteins MDC1 and 53BP1 at the site of the DSB.
منابع مشابه
H2AX after Exposure to Ionizing Radiation ATM and DNA-PK Function Redundantly to Phosphorylate
H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to ionizing radiation (IR) occurs to similar...
متن کاملγ-H2AX as a protein biomarker for radiation exposure response in ductal carcinoma breast tumors: Experimental evidence and literature review
Background: H2AX is a histone variant that is systematically found and ubiquitously distributed throughout the genome. DNA double-strand breaks (DSBs) induce phosphorylation of H2AX at serine 139 (γH2AX), an immunocytochemical assay with antibodies recognizing γH2AX has become the gold standard for the detection of DSBs. The importance of this assay to investigate different individu...
متن کاملExpression of phosphorylated histone H2AX in blood lymphocytes of patients undergoing angiographic procedures following exposure to X‐rays
Introduction: Coronary angiography is a Diagnostic-Therapeutic method involving ionizing radiation. This method causes to DNA damage with form double stranded breaks which is followed by the phosphorylation of the histone, H2AX. H2AX is a key factor in the repair process of damaged DNA which will accumulate to damage sites. In human cells, H2AX constitutes about 10% of the H2A ...
متن کاملClustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA–PK
DNA double-strand breaks (DSB) are considered as the most deleterious DNA lesions, and their repair is further complicated by increasing damage complexity. However, the molecular effects of clustered lesions are yet not fully understood. As the locally restricted phosphorylation of H2AX to form γH2AX is a key step in facilitating efficient DSB repair, we investigated this process after localize...
متن کاملReplication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase.
Replication protein A (RPA, also known as human single-stranded DNA-binding protein) is a trimeric, multifunctional protein complex involved in DNA replication, DNA repair, and recombination. Phosphorylation of the RPA2 subunit is observed after exposure of cells to ionizing radiation (IR) and other DNA-damaging agents, which implicates the modified protein in the regulation of DNA replication ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 7 شماره
صفحات -
تاریخ انتشار 2004